Multi-twisted codes over finite fields and their dual codes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields are studied. An algorithm for factorizing xn − λ over Fq2 is given, where λ is a unit in Fq2 . Based on this factorization, the dimensions of the Hermitian hulls of λ-constacyclic codes of length n over Fq2 are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp., complementary dua...

متن کامل

Constacyclic codes over finite fields

An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length lp are characterized, where p is the characteristic of the finite field and l is a prime different from p.

متن کامل

Complementary Dual Subfield Linear Codes Over Finite Fields

Two families of complementary codes over finite fields q are studied, where 2 = q r is square: i) Hermitian complementary dual linear codes, and ii) trace Hermitian complementary dual subfield linear codes. Necessary and sufficient conditions for a linear code (resp., a subfield linear code) to be Hermitian complementary dual (resp., trace Hermitian complementary dual) are determined. Construct...

متن کامل

Repeated-Root Self-Dual Negacyclic Codes over Finite Fields

Let Fq be a finite field with q = p , where p is an odd prime. In this paper, we study the repeated-root self-dual negacyclic codes over Fq. The enumeration of such codes is investigated. We obtain all the self-dual negacyclic codes of length 2p over Fq, a ≥ 1. The construction of self-dual negacyclic codes of length 2bp over Fq is also provided, where gcd(2, b) = gcd(b, p) = 1 and a ≥ 1.

متن کامل

New MDS Self-Dual Codes over Large Finite Fields

We construct MDS Euclidean and Hermitian self-dual codes over large finite fields of odd and even characteristics. Our codes arise from cyclic and negacyclic duadic codes. ∗Faculty of Mathematics USTHB, University of Sciences and Technology of Algiers, B.P 32 El Alia, Bab Ezzouar, Algiers, Algeria

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2018

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2018.01.012